ÜBER METALL-ALKYL-VERBINDUNGEN IX*. DIE KRISTALLSTRUKTUREN DES KALIUM-, RUBIDIUM- UND CÄSIUM-TETRAMETHYLALUMINATS SOWIE DES KALIUM- UND RUBIDIUM-TETRAMETHYLGALLATS

R. WOLFRUM, G. SAUERMANN UND E. WEISS

Institut für Anorganische Chemie der Universität Hamburg, Papendamm 6; Hamburg 13 (Deutschland) (Eingegangen den 25. März 1969)

SUMMARY

We report the synthesis of the metalate complexes $M^{1}[Al(CH_{3})_{4}](M^{1} = Rb, Cs)$ and $M^{1}[Ga(CH_{3})_{4}](M^{1} = K, Rb)$. Their crystal structures, including the structure of the already known compound K[Al(CH_{3})_{4}], have been determined from X-ray powder diagrams. All complexes are isostructural. They crystallize in tetragonal body-centered lattices of the space group $I4_{1}/amd$ with 4 formula units $M^{1}[M^{11}(CH_{3})_{4}]$ per unit cell. Similar to the compounds $Li_{2}[Zn(CH_{3})_{4}]$ and $Li_{2}[Be(CH_{3})_{4}]$ the central atoms Al and Ga are coordinated by 4 methyl groups in a distorted tetrahedral array. There is no covalent interaction between the alkali cations and the complex anions. The structures therefore consist of isolated M^{+} and $[M^{11}(CH_{3})_{4}]^{-}$ ions. The highly polar character in the bonding between central atoms and ligands causes a considerable weakening of the M^{111} -C bond.

ZUSAMMENFASSUNG

Die Darstellung der Metallat-Komplexe $M^{I}[Al(CH_{3})_{4}]$ ($M^{I} = Rb$, Cs) und $M^{I}[Ga(CH_{3})_{4}]$ ($M^{I} = K$, Rb) wird mitgeteilt. Ihre Kristallstrukturen, sowie diejenige der bekannten Verbindung K[Al(CH_{3})_{4}], wurden röntgenographisch aus Pulverdaten bestimmt. Alle Komplexe sind isotyp. Sie kristallisieren in tetragonalinnenzentrierten Gittern der Raumgruppe $I4_{1}/amd$ mit 4 Formeleinheiten $M^{I}[M^{III}-(CH_{3})_{4}]$ in der Elementarzelle. Ähnlich wie im Falle des Li₂[Zn(CH_{3})_{4}] und Li₂[Be-(CH_{3})_{4}] sind die Zentralatome Al und Ga verzerrt tetraedrisch von 4 Methylgruppen umgeben. Es liegen keine kovalenten Wechselwirkungen zwischen den Alkalikationen und den komplexen Anionen vor. Die Strukturen bestehen daher aus isolierten M⁺- und [M^{III}(CH₃)₄]⁻-Ionen. Zwischen Zentralatomen und Liganden sind beträchtliche polare Bindungsanteile vorhanden, die zu einer erheblichen Schwächung der M^{III}-C-Bindung führen.

^{*} Für VIII. Mitteilung siehe Ref. 2.

EINLEITUNG

Vor einiger Zeit berichteten wir über die aus Pulverdaten ermittelten Strukturen des $\text{Li}_2[\text{Zn}(\text{CH}_3)_4]^1$ und des $\text{Li}_2[\text{Be}(\text{CH}_3)_4]^2$. Diese at-Komplexe kristallisieren isotyp in tetragonal-innenzentrierten Gittern, wobei die vergleichsweise nur schwach streuenden Li-Atome teilweise nicht eindeutig lokalisiert werden konnten (wahrscheinliche Raumgruppe $I\overline{4}$). Die Zentralatome Zn und Be sind jeweils verzerrt tetraedrisch von Methylgruppen umgeben. Aus den Metall-Kohlenstoff-Abständen wurde auf eine weitgehend ionische Struktur mit isolierten Tetramethylmetallat-Ionen geschlossen.

Von den at-Komplexen mit Alkylliganden und Zentralatomen aus der 3. Hauptgruppe wurde bisher nur das $\text{Li}[Al(C_2H_5)_4]$ röntgenographisch untersucht³. Diese Verbindung kristallisiert in einem tetragonal-primitiven Gitter. Die Struktur wird als analog zu derjenigen des Dimethylberylliums beschrieben und besteht aus linearen Ketten von alternierenden Li- und Al-Atomen, die annähernd tetraedrisch von den Alkylgruppen koordiniert werden. Die Äthylgruppen sind dabei bevorzugt an das Aluminium gebunden. Jedoch wird auch die Wahrscheinlichkeit von schwachen kovalenten Li-C-Bindungen diskutiert.

IR-spektroskopische Untersuchungen der Komplexe $M^{I}[AlR_{4}]$ ($M^{I}=Li$, Na; $R = CH_{3}, C_{2}H_{5}$)⁴ zeigten, dass die Äthylverbindungen annähernd tetraedrische Anionen aufweisen, während in den Methylverbindungen die kovalente Wechselwirkung zwischen Alkalikation und komplexem Anion eine Verzerrung des Anions zur $C_{2\nu}$ -Symmetrie bewirkt. Die Methylgruppe scheint also stärker zu Brückenbindungen des Mehrzentrentyps zu neigen als die Äthylgruppe und ähnelt in dieser Hinsicht dem Hydridion⁵. Die Verzerrung des Anions hat im Falle des Li[Al(CH₃)₄] und des Li[Ga(CH₃)₄] anscheinend eine Erniedrigung der Gittersymmetrie zur Folge. Wir waren bisher nicht in der Lage, die Pulverdiagramme dieser Lithiumkomplexe zu indizieren und nehmen an, dass sie in einem niedrigsymmetrischen Gitter kristallisieren*.

Aus der kleiner werdenden Aufspaltung der Al-C-Valenzschwingungsbanden in den IR-Spektren der Methylkomplexe beim Übergang von Li zu Na⁴ lässt sich entnehmen, dass man bei Verwendung schwererer Alkalikationen schliesslich einen Zustand erreichen müsste, in dem die kovalente Wechselwirkung zwischen Kation und komplexem Anion und damit dessen Verzerrung aufgehoben ist, also ein annähernd tetraedrisches Anion vorliegt. Dies sollte im IR-Spektrum Anlass zu einer einzigen v(Al-C)-Schwingung geben und vielleicht auch die Kristallsymmetrie so erhöhen, dass eine Indizierung der Pulverdiagramme möglich würde. Dafür sprechen auch die, im Gegensatz zum monoklinen LiAlH₄⁵, tetragonal kristallisierenden Verbindungen NaAlH₄ und KAlH₄, deren Zellkonstanten kürzlich publiziert wurden⁶. Das Gallium sollte sich auf Grund der sehr ähnlichen Ionenradien in seinen at-Komplexen weitgehend wie das Aluminium verhalten.

Wir konnten diese Überlegungen sowohl IR-spektroskopisch⁷ als auch röntgenographisch bestätigen. Der Zustand maximaler Bindungspolarität ist bereits beim Kalium als Kation erreicht. Entsprechend kristallisieren alle genannten 5 at-Komplexe isotyp in einem tetragonal-innenzentrierten Gitter. Wir berichten im folgenden über die Darstellung und Strukturaufklärung dieser at-Komplexe.

^{*} Über die Struktur des Na[Al(CH₃)₄] wird demnächst berichtet.

J. Organometal. Chem., 18 (1969) 27-47

STRUKTURBESTIMMUNG

Die Aluminat- und Gallatkomplexe wurden als farblose, luftempfindliche Kristallpulver erhalten und mit einem Zählrohrgoniometer (Cu-K_a-Strahlung, $\lambda = 1.5418$ Å) röntgenographisch vermessen. Die resultierenden Diagramme licssen sich unter Zugrundelegung eines tetragonal-innenzentrierten Gitters indizieren. Die Auslöschungsgesetze (*hkl*) mit h+k+l=2n; (*hk*0) mit h, k=2n und (*hhl*) mit 2h+l=4n ergeben eindeutig die Raumgruppe $14_1/amd-D_{4h}^{19}$. Aus der Dichte des Trimethylaluminiums (0.752 g/cm³)⁸ und des Methylkaliums (1.37 g/cm³)⁹ folgt für das Kalium-tetramethylaluminat ein Mittelwert von $\rho = 1.06$ g/cm³. Daraus wurde auf 4 Formeleinheiten pro Elementarzelle geschlossen. Die hiermit berechnete röntgenographische Dichte von $\rho = 1.13$ g/cm³ steht in guter Übereinstimmung mit dem gemittelten Wert. In Tabelle 1 sind wichtige röntgenographische Daten aller 5 Verbindungen zusammengefasst. Die angegebenen *R*-Werte* enthalten die Beiträge aller Reflexe *hkl*. Bei den 2*B*-Werten handelt es sich um die durchschnittlichen isotropen Temperaturfaktoren der letzten Rechenzyklen**.

Folgende Atomlagen¹⁰ wurden zur Unterbringung der Metall- und Kohlenstoffatome verwendet ($M^{I} = K$, Rb, Cs; $M^{III} = AI$, Ga): M^{III} in 4(a): 0,0,0; $0,\frac{1}{2},\frac{1}{4}$; M^{I} in 4(b): 0,0, $\frac{1}{2}$; $0,\frac{1}{2},\frac{3}{4}$; CH₃ (als punktförmig angenommen) in 16(h): 0,x,z; $0,\overline{x},z$; $0,\frac{1}{2}+x$, $\frac{1}{4}-z$; $0,\frac{1}{2}-x,\frac{1}{4}-z$. Die Zentralatome Al und Ga sowie die Kationen K, Rb und Cs besetzen jeweils spezielle Lagen, die aus Fig. 1 ersichtlich sind. Eine Berücksichtigung der Wasserstoffe erschien neben den schweren Metallatomen wenig sinnvoll. Die Anordnung der Methylgruppen ist plausibel, weil sie den maximalen Abstand der Liganden voneinander gewährleistet. Ausgehend von einem vernünftigen "trial-anderror"-Modell wurden die C-Parameter nach der Bhuiya–Stanley-Methode¹¹ verfeinert (Atomformfaktoren nach Moore¹²). Dabei ergaben sich die in Tabelle 1 genannten *R*-Werte und C-Koordinaten. In den Tabellen 2–6 werden die berechneten

TABELLE 1

(Fortsetzung S. 42)

RÖNTGENOGRAPHISCHE DATEN FÜR KALIUM-, RUBIDIUM- UND CÄSIUM-TETRAMETHYLALUMINAT UND KALIUM- UND RUBIDIUMTETRAMETHYLGALLAT

at-Komplex	a_0	c _o -ኑ 0.005 (Å)	$\rho_{r\delta ntg.}$	hkl bis 20	≦	R (%/)	$\frac{2B}{(\lambda^2)}$	(C)	
	±0.005 (A)	±0.005 (A)	(g/cm/)	Erwartet	Beob.	(/0)	(~)	y(C)	2(C)
K[AI(CH ₃) ₄]	9.682	7.90 ₅	1.13	115° : 135	94	11.2	3.96	0.191	0.873 +0.01
Rb[Al(CH₃)₄]	9.92 ₇	8.03 ₆	1.45	104° : 122	100	10.1	5.37	0.161	0.839
Cs[Al(CH ₃) ₄]	10.24 ₈	8.37 ₁	1.66	74°: 70	57	9.1	7.63	0.145	0.850 +0.03
K[Ga(CH₃)₄]	9.69 ₂	7.82 ₃	1.53	100° : 110	63	19.6	2.84	0.212	0.866
Rb[Ga(CH₃)₄]	9.93 ₀	7.96 ₀	1.82	102° : 116	62	10.2	6.65	0.199 ±0.03	0.878 ±0.03

 $\star R = \Sigma (|I_{beob} - I_{ber}|) / \Sigma I_{beob}.$

** Die Rechnungen wurden auf der Telefunken TR4-Anlage der Universität Hamburg ausgeführt.

Fig. 1. Modell der Elementarzelle von K[Al(CH₃)₄]; isotyp: Rb[Al(CH₃)₄], Cs[Al(CH₃)₄], K[Ga-(CH₃)₄], Rb[Ga(CH₃)₄]. Fig. 2. Modell der Elementarzelle von Rb[Al(CH₃)₄].

ÜBER METALL-ALKYL-VERBINDUNGEN. IX

.

TABELLE 2

NETZEBENENABSTÄNDE UND INTENSITÄTEN DES KALIUMTETRAMETHYLALUMINATS

hkl	dbeab. (Å)	$d_{\rm ber.}$ (Å)	Iber. für 141/amd	I beab.
101	<u> </u>	6:123	3.85	
200	4.869	4.841	821.02	788
-211		3.798	0.60	
220)	2 472 .	3.423	34.05 533 31	580
112}	3.423	3.423	499.27	200
202	3.058	3.062	183.42	156
301	2.990	2.988	89.27	9 7.2
321)	2 551	2.543	88.98 (105.98	119
103	2.331	2.543	17.00	115
312)	2 420	2.421	341.89 (505.29	532
400Ĵ	2.420	2.421	163.40	552
411)	2.254	2.251	0.06 16 60	10.4
213)	2.254	2.251	16.63	10.4
420	2.171	2.165	69.99	64.2
402	2.069	2.064	8.18	10.6
303	2.041	2.041	1.86	2.8
332)	1.000	1.976	82.94	102
004	1.980	1.978	2.86	105
422		1.899	8.66	
431)		1.881	20.76)	
501	1.884	1.881	1.73 > 25.65	22.3
323)		1.881	3.16)	
204	1.830	1.830	50.52	50.7
521)		1.753	2.59) = 50	
413	1.754	1.753	, 5.00 7.59	2.7
4405		1.712	24.83	
512	1.712	1.712	88.39 >203.95	156
224		1.712	90.73	
314		1.660	0.02	
600	1.615	1.614	36.42	36.8
433)		1.560	1.06]	00.0
611		1.560	0.01	
503	1.560	1.560	4.35 6.52	5.2
105		1.560	1.10	
532)		1.531	55.35)	
620	1.532	1.531	25.80 95.04	97.8
404		1.531	13.89	
602		1.494	0.27	
541)		1.485	1.06)	
523	1.485	1.485	6.04 9.33	4.6
215)		1.485	2.22	
424	1.459	1.460	61.20	62.6
622	1.428	1.428	4.98)	
631)		1.420	4.68 > 10.09	10.2
305	1.420	1.420	043	
514		1.369	0.00	
613		1.363	1 32	
701		1.363	0.93	
325		1.362	0.44	
640	1.343	1.343	21.05	15.7
543	-	1.312	3.28	
			5.20	

. (Fortgesetzt)

31

hkl	d _{beab.} . (Å)	d _{ber.} (Å)	Iber. für 141/amd	I beob.	
721		1.312	1.46		
415		1.312 ·	1.01		
552]		1.294	12.43		
444	1 204	1.294	11.63 62.69	70.6	
712	1.294	1.294	25.53	19.0	
116		1.294	13.09		
642		1.271	0.41		
534		1.271	0.01		
206		1.271	2.27		
633		1.266	0.33		
604	1.250	1.250	3.82	4.33	
651		1.225	0.38		
703		1.225	0.00		
435	•	. 1.225	0.31		
505		1.225	1.06		
732		1.210	19.01)		
624	1.010	1.210	19.91	~	
800 (1.210	1.210	4.70 61.92	51.4	
316		1.210	18.30		
741		1.187	0.93 ງົ		
723	1 107 ·	1.187	0.02	.1	
811	1.187	1.187	0.00	<1	
525		1.187	2.15		
820	1.175	1.174	2.62	3.9	
802)		1.157	1.88	2.2	
406	1.157	1.157	0.40	2.2	
660 1		1.141	6.09		
336	1.141	1.141	6.69	9.2	
822		1.126	0.05		
714 }	1.124	1.126	0.00 { 1.71	<1	
426)		1.126	1.65		
653]		1.122	1.64		
831		1.122	1.41		
615	1.121	1.122	0.46 3.51	<1	
107		1.122	0.00		
644	1.110	1.111	8.71	7.2	
743		1.093	0.01	=	
813		1.093	0.42		
545		1.093	1.42		
217		1.093	0.01		
752)		1.083	11.42)		
840	1.083	1.083	3.46 26.93	23.0	
516)	1.002	1 083	12.06	20.0	
734		1.069	0.00		
635		1.066	017)		
307	1.065	1.066	0.52 0.69	1.2	
842		1.044	0.72		
761		1 041	0.58		
833		1 041	0.55		
705		1 041	0.13	,	
327		1.041	1 21		
804)		1 032	A 75]		
536	1.032	1.032	961 14.36	18.3	
2201					

hki	$d_{\text{beob.}}$ (Å)	d _{ber.} (Å)	I _{her.} für 14 ₁ /amd	I beob.
606		1.021	0.04	
851		1.018	0.16	
725		1.018	0.00	
417		1.018	0.00	
824	1.009	1.009	18.19	12.1
626		0.999	0.97	
664 <u>j</u>	0.988	0.988	2.01	11.2
0085	0.200	0.988	2.34	11.2
754		0.978	0.00	
763)		0.976	0.00	
655	0.075	0.976	0.98	• • •
437 (0.975	0.976	0.93	1.6
507 5		0.976	0.08	
360)	0.069	0.968	3.22 7.00	
208	0.908	0.968	4.46	8.0
853		0.956	0.95	
745		0.956	0.00	
315		0.956	0.39	
527		0.956	0.08	
[277		0.949	3.80)	
344		0.949	11.26	
556 🎽	0.949	0.949	4.03 27.73	26.2
716		0.949	7.45	
₂₂₈ J		0.949	1.19	
362)		0.940	1.19)	
546 }	0.940	0.940	0.13 1.32	1.2
318)		0.940	0.01	
335		0.921	0.05	
517		0.921	0.00	
136]	0.016	0.915	6.62	
108∫	0.915	0.915	5.68 12.31	13.6

 TABELLE 2 (Fortsetzung)

NETZEBENENABSTÄNDE UND INTENSITÄTEN DES RUBIDIUM-TETRAMETHYLALUMINATS

hkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber, für 141/amd	I beob.
101	6.272	6.246	240.59	211
200	4.986	4.964	1422.72	1449
211	3.902	3.886	83.12	127
220	3.519	3.510	248.41)	12/
112	3.500	3.487	646.75	838
202	3.131	3.123	63.65	106
301	3.069	3.060	248.03	243
321	2.610	2.605	217.78	245
103	2.588	2.586	123.98 341.76	300
400	2.488	2.482	169.65	
312	2.481	2.474	630.84 800.49	841
411	2.311	2.306	25.29	
213	2.297	2.294	71.96 97.25	115
420	2.224	2.220	122.64	133

hkl	$d_{\text{beob.}}$ (Å)	$d_{\rm ber.}$ (Å)	Iber. für 141/amd	I beob.			
402	2.115	2.112	12.71	8.1			
303	2.085	2.082	18.27	5.4			
332	2.025	2.022	187.63 208.34	168			
004	2.012	2.009	20.71	100			
422	1.944	1.943	0.21	2.5			
431	1.026	1.928	62.62)				
501∫	1.720	1.928	14.36 84.74	66.7			
323	1.920	1.920	7.77)				
204	1.864	1.862	89.16	92.7			
521	1.799	1.797	15.35 39.66	36.3			
413	1.794	1.791	24.31	2010			
440	1.755	1.755	25.01				
512	1.752	1.752	139.08 258.19	288			
224	1.746	1.744	94.09.)				
314		1.692	5.13				
600	1.655	1.655	53.39	49.7			
611	1.601	1.599	11.01				
433	1 596	1.595	3.71 28.40	20.3			
503 j	1.570	1.595	13.69)				
105	1.587	1.587	3.54	1.6			
620	1.570	1.570	57.45				
532	1.568	1.568	106.75 209.64	207			
404	1.562	1.562	45.45)				
602	1.531	1:530	0.00				
541	1.523	1.522	1.57	20.0			
523	1.518	1.519	11.53 37.44	30.0			
215	1.511	1.511	18.357	07.6			
424	1.489	1.490	93.00	97.5			
022	1.403	1.402	2.32	3.9			
205	1.455	1.433	20.36	13.0			
505		1.440	1.00				
701	1.397	1.370	2.62				
613	1 303	1.377	15 34 25.58	14.7			
325	1 389	1 388	7.62				
640	1 376	1 377	29.49	26.5			
721}	1.570	1 344	3.19)				
543	1.344	1 347	591 9.10	9.2			
415	1 337	1.337	10.77)				
552]		1.325	20.37				
712	1.325	1.325	37.87 >114.75				
444	1.322	1.322	27.28				
116	1.315	1.316	29.23				
642		1.302	1.68				
534		1.299	0.88				
633	1 305	1.295	4.83	2.0			
206	1.295	1.293	0.04	3.2			
604 [´]	1.278	1.277	12.73	12.7			
651	1.255	1.255	4.35	A 7			
703	1.253	1.253	4.90 ^{9.23}	4./			
435	1.050	1.249	5.11	4 7			
505	1.200	1.249	1.18	4.7			
-			-				

TABELLE 3 (Fortsetzung)

 TABELLE 3 (Fortsetzung)

ıkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für 141/amd	I beob.
300	1.241	1.241	9.86	
732	1.239	1.240	33.27 100.48	89.7
24	1.237	1.237	29.18	4.60
16	1.232	1.232	28.17	
41}	1 217	1.217	2.15	
u(–	1,217	1.217	2.55	13.2
23'	1.215	1.215	4.92	10.2
25	1.211	1.211	5.78	
20	1.203	1.204	11.43	8.7
)2		1.186	0.30	
6		1.179	0.03	
0	1.169	1.170	9.75	7.2
6	1.161	1.162	6.31	9.1
2		1.153	0.01	
4	1.150	1.151	0.01)	
1)		1.150	5.65	
3	1.149	1.148	5.53 33.67	6.9
6)		1.147	. 0.65	
5	1.147	1.145	1.84	
7		1 140	0.63	
1	1 135	1 136	19.77	18.2
- 3)	1.1.5.5	1,110	3.13)	10.4
3	1.119	1 1 1 9	3.37 10.92	7.8
5	1.116	1.116	4.41	7.0
- 7	1.112	1.112	3.67	
0	1 1 10	1 110	7.42	
2	9011	1 109	1674 51.51	50.5
-	1 103	1 104	23.68	
4	1 093	1 094	0.58	17
5	1.075	1 089	0.50	1./
7		1.085	0.50	
, 7		1.009	0.03	
- 1)		1.070	1.61)	
2	1.066	1.067	104 336	42
-) 5	1.064	1.000	0.71	ч.J
7	1.060	1 060	207)	
4	1.057	1.056	673 22 50	30 0
6	1.057	1.053	12.80	59.0
0 1	1.052	1.000	1 59	
6		1.041	0.00	
5		1.041	2.00	
5		1.040	3.23	
i A	1.032	1.030	3.07	107
4 6	1.032	1.033	12.39	10.7
0 4	1.012	1.019	0.02	
4 0	1.012	1.011	4.4.5	13.6
4		1.005	1.35	
)4 : 3		1.001	0.02	
5		0.999	3.58	
20		0.997	0.99	
) / \		0.994	2.62	
11	0.005	0.994	0.38	
U U	Q.992	0.993	7.17	7.3

(Fortgesetzt)

(1 ongebeib)

hkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für 141/amd	Ibeob.
208	0.984	0.985	4.12	3.5
853	0.979	0.979	1.85	1.2
745 815 {	0.977	0.978 0.977	2.34 1.86 4.20	3.5

TABELLE 3 (Fortsetzung)

NETZEBENENABSTÄNDE	UND	INTENSITÄTEN	DES	CÄSIUM-TETR	AMETHYL	ALUMINATS

hkl	$d_{\text{beob.}}$ (Å)	$d_{ber.}$ (Å)	I _{ber.} für 14 ₁ /amd	Ibcob.
101	6.520	6.483	53.21	50.3
200	5.149	5.124	169.49	171
211	4.038	4.020	28.91	26.0
112)	2625	3.624	86.20 127 10	174
220\$. 3.033	3.623	40.90 { 127.10	124
202	3.251	3.242	3.43	5.8
301	3.173	3.163	28.76	31.0
103)	7 607	2.692	15.87	41.6
321 (2.097	2.691	29.64	41.0
312(2 569	2.562	69.78 87 30	03.7
400 j	2.509	2.562	17.61	95.7
213)	2 385	2.383	14.88	25.0
411 {	2.505	2.383	6.63	25.0
420	2.297	2.292	15.91	18.0
402	2.183	2.185	1.20	1.7
303	2.163	2.161	3.15	2.6
004	2.095	2.093	2.45	18.0
332∫	2.075	2.092	18.70	10.0
422	2.012	2.010	0.17	1.7
323)		1.991	3.16	
431	1.993	1.991	8.53 { 15.09	10.9
501)		1.991	3.40 J	
204	1.937	1.937	10.07	12.6
413	1 857	1.856	4.67 924	5.8
521§	1.057	1.856	4.57	5.0
224		1.812	9.81	
512	1.813	1.812	17.23 29.82	31.1
440)		1.812	2.77)	
314		1.758	0.17	
600	1.708	1.708	4.89	3.2
105		1.652	1.12	
433 (1.652	1.652	1.28 (5.88	66
503	1.052	1.652	1.48	0.0
611)		1.652	1.99]	
404		1.621	5.25	
532	1.621	1.621	11.54 22.69	24.0
620)		1.620	5.90)	
602		1.581	0.01	
215		1.573	2.65)	
523 }	1.571	1.572	1.80 6.50	5.1
541 J		1.572	2.05)	
		~ ~ ~	* 	·

hki	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für I41/amd	I beob.
424	1.544	1.545	10.29	9.7
622		1.511	0.07	
305)	1 602	1.503	0.39	3 7
631∫	1.502	1.503	2.46 2.85	5.2
514		1.450	0.01	
325)		1.443	1.06	
613	1.443	1.442	1.87 2 3.37	1.7
701)		1.442	0.44)	
640	1.420	1.421	2.68	2.1
415)		1.389	1.64)	
543	1.388	1.388	0.85 3.14	2.8
721)		1.388	0.66 }	
116)		1.370	2.77	
444	1.200	1.370	3.00	10.2
552	1.309	1.370	2.33	10.2
712		1.370	4.14	
206		1.346	0.01	
534		1.346	0.01	
642		1.346	0.09	
633		1.340	0.71	
604		1.323	1.41	
435		1.297	0.74	
505		1.297	0.26	
703		1.296	0.62	
651		1.296	0.83	
316		1.281	3.03	
624 (1 780	1.281	2.96	74
732 (1.200	1.281	3.16	7.4
800 J		1.281	1.05	

TABELLE 4 (Fortsetzung)

NETZEBENENABSTÄNDE UND INTENSITÄTEN DES KALIUM-TETRAMETHYLGALLATS

hkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für 141/amd	I beab.
101	6.125	6.088	183.19	240
200	4.869	4.846	978.57	864
211	3.808	3.791	141.28	174
220 112	3.437 3.409	3.427 3.397	109.42 731.93	921
202	3.054	3.044	116.54	114
301	2.998	2.986	0.28	3.4
321		2.542	3.03	
103		2.518	4.03	
400	2.428	2.423	238.52 , 205 25	
312	2.416	2.413	546.75 (185.27	862
411	2.252	2.251	26.26	31.4
213	2.235	2.235	15.25	14.3
420	2.169	2.167	162.77	129
402	2.060	2.060	0.96	5.5

(Fortgesetzt)

.

hkl	$d_{bcob.}$ (Å)	d(Å)	I _{ber.} für 14 ₁ /amd	I beob.
303	2.030	2.029	13.63	24.0
332	1.974	1.973	139.43	142
004	1.956	1.956	13.39	18.5
422	1.898	1.896	15.43	4.3
431)		1.882	2.22	
501	1.882	1.882	15.62 > 46.92	49.9
323	1.872	1.872	29.08	
204	1.815	1.814	93.01	85.5
521	1.753	1.754	25.93	20.1
413	1.747	1.746	4.95	28.1
440	1.713	1.713	54.95	
512	1.711	1.710	148.17 203.12	165
224	1.700	1.699	123.58	98
314	1	1 649	0.14	20
600	1.616	1.615	39.57	51.7
611		1.561	7.86	
433)		1.556	10.72)	
5031	1.556	1.556	021 10.93	11.8
105		1.550	2.08	
670	1 533	1.545	34.69]	
532	1.530	1.530	97 34 132.03	130.4
404	1.530	1.550	27.66	30.5
602	1.544	1 493	1 33	37.5
541	1 486	1.495	12.05	10.7
572	1.400	1.400	1 20	10.7
215		1.401	2 22	
474	1 452	1.472	85.56	101
622	1.452	1.432	0.92	101
631		1.421	1 30	
305	1 409	1.421	4.87	43
701	1.402	1 363	0.20	7.5
514		1 363	0.03	
613		1 360	2.54	
325	1 352	1 352	503	37
640	1 344	1 344	31.75	19.1
721	1 313	1 313	051	32
543	1 310	1 309	0.40	16
415	1.510	1.303	2.57	1.0
552)		1 294	22 23)	
7121	1.293	1 294	48 54 87 25	75 1
444	1 289	1 280	16.48	75.1
116	1.281	1.281	23.74	254
642	11	1.271	0.48	4.5.4
534		1.267	0.12	
633	1 264	1 264	4 88	21
206	1-20-1	1 2 5 9	1 43	2.1
604	1 245	1 246	1545	95
651	1 226	1 226	5.79	2.5
703	1 773	1 223	J.Z.F 7 37	3.2
435)	(عنه، 1	1 212	4.50]	5.2
	1 218	1.410	**.J7 > 500	30

TABELLE 5 (Fortsetzung)

J. Organometal. Chem., 18 (1969) 27-47

--

hkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für 141/amd	Ibcob.
800 {	1 210	1.212	10.73)	
732 (1.210	1.210	37.45 94.78	51.6
624	1.206	1.206	46.59)	
316	1.199	1.200	32.84	30.6
741		1.188	0.26	
811		1.188	2.49	
723		1.186	5.28	
525		1.181	0.17	
820		1.175	10.62	
802		1.157	0.54	
406		1.148	0.05	
660		1.142	6.43	
336	1.132	1.132	11.83	4.2
822		1.126	0.17	
831		1.123	0.54	
714		1.123	0.04	
653		1.121	0.29	
426		1.117	1.03	
615		1.116	0.99	
107		1.110	1.30	
644	1.107	1.108	21.77	11.5
743		1.092	3.08	
813		1.092	1.02	
545		1.088	0.38	
840)		1.084	12.23)	
752 }	1.083	1.083	22.86 > 36.15	13.6
217)		1.082	1.06 }	
516	1.075	1.075	24.75	14.7
734		1.067	0.00	
535		1.062	2.15	
307		1.056	0.42	
342		1.044	0.35	
761		1.042	0.15	
33		1.040	2.20	
705		1.037	1.65	
327	1.032	1.032	0.16	7.3
304	1.030	1.030	7.87	8.9
536	1.026	1.026	19.49	7.3
100		1.019	2.51	
506		1.015	0.23	
25		1.014	2.02	
41/ 204	1 007	1.009	1.55	
24	1.007	1.007	24.81	13.1

TABELLE 5 (Fortsetzung)

.

•

TABELLE 6

NETZEBENENABSTÄNDE UND INTENSITÄTEN DES RUBIDIUM-TETRAMETHYLGALLATS

hkl	$d_{beob.}$ (Å)	$d_{\rm ber.}$ (Å)	Iber. für 141/amd	I beeb.
101		6.211	1.84	
200	4.983	4.965	1941.49	1951
211		3.878	0.0	
220	3.520	3.511	350.05	307
112	3.469	3.463	1397.29	1403
202	3.110	3.106	102.81	75.8
301	3.064	3.056	38.68	62.5
321	2.607	2.603	42.23	47.3
103	2.564	2.563	5.39	16.3
400	2.485	2.483	351.99	394
312	2.467	2.465	953.33	922
411		2.305	0.09	
213	2.276	2.278	8.62	3.3
420	2.223	2.220	283.76	270
402	2.108	2.106	2.53	10.3
303		2.070	0.94	•
332	2.019	2.018	225.23	274
004	1.990	1.990	29.83	29.9
422	1.940	1.939	7.40	2.8
431]	1.020	1.927	9.48 10.50	10.2
501	1.929	1.927	1.03 { 10.50	10.2
323 ′	1.912	1.911	0.66	5.6
204	1.846	1.847	152.06	130
521		1.796	1.14	
413		1.783	2.22	
440	1.757	1.755	73.03	220
512	1.750	1.749	259.57	520
224	1.731	1.731	169.83	148
314		1.681	0.02	
600	1,656	1.655	65.38	104
611		1.599	0.06	
433		1.590	0.23	
503		1.590	2.05	
105]	1 571	1.572	0.76)	
620∫	1.571	1.570	69.55 224.65	230
532	1.567	1.566	154.34)	
404	1.552	1.553	54.14	68.9
602		1.528	0.34	
541		1.522	0.37	
523		1.514	3.62	
215		1.499	0.81	
424	1.481	1.482	129.45	157
622		1.461	1.57	
631		1.455	2.14	
305		1.435	0.02	
701		1.397	0.80	
514		1.392	0.00	
613		1.390	0.66	
325 (1 278	1.378	0.09	61.0
640∫	1.570	1.377	45.67	21.0
721		1.344	1.39	
,			- -	

TABELLE 6 (Fortsetzung)

hkl	d _{beob.} (Å)	d _{ber.} (Å)	Iber. für 141/amd	I beob.
415		1.328	0.59	
552	1.325	1.324	33.19 98.34	98.5
712)	1.525	1.324	65.15	20.5
444	1.316	1.317	28.14	37.7
116]	1.302	1.304	29.65	38.8
642)	1.502	1.301	0.00	50.0
534		1.294	0.01	
633		1.293	0.03	
206		1.293	0.88	
604	1.272	1.273	19.82	23.6
651		1.256	0.07	
703		1.251	0.01	
435		1.242	0.01	
505		1.242	0.69	
80 <u>0</u>	1.242	1.241	11.94 57.66	76 /
732	1.239	1.239	45.72	70.4
624	1.232	1.233	48.69	43.8
316 .	1.221	1.222	43.03	39.6
741		1.217	0.84	
811		1.217	0.05	
723		1.213	0.00	
525 L	1 205	1.205	0.97	. 120
820)	1.205	1.204	13.80	12.9
802	*	1.185	0.59	
660Į	1 171	1.170	9.61 0.60	145
406	1.171	1.170	0.08	14.5
336)	1 1 5 3	1.154	16.22	151
8225	1.155	1.153	0.00 (10.22	15.1
831		1.150	0.70	
714		1.147	0.00	
653		1.147	0.83	
615		1.140	0.31	
426	_	1.139	0.33	
644	1.132	1.132	24.90	28.8
107		1.130	0.04	
743		1.117	0.00	
813		1.117	0.30	
545		1.111	0.75	
840 Į	1 109	1.110	11.40	42.6
752)	1.107	1.109	25.33 5 50.75	42.0
217		1,102	0.02	
516	1.096	1.096	23.18	28.7
734		1.091	0.00	
635		1.084	0.00	
307		1.076	0.30	
842		1.069	0.25	
761		1.067	0.48	
833		1.065	0.00	
705	1.059	1.059	0.00)	
804(1.053	1.053	9.69 } 10.10	31.3
3275	1.000	1.051	0.41	
536	1.046	1.047	18.80	14.9

(Fortgesetzt)

.

hkl	d _{beob.} (Å)	d _{ver.} (Å)	Iber. für 141/amd	Ibeob.
851	1.043	1.044	0.01	8.0
725		1.036	0.00	
606		1.035	0.04	
824	1.030	1.030	23.53	32.0
417	1.028	1.028	$0.05 \begin{cases} 23.38 \\ 23.38 \end{cases}$	23.9
626	1.013	1.013	0.20	766
664	1.008	1.009	7.04	20.0
754		0.999	0.00	
763		0.998	0.00	
008 }	0.004	0.995	2.65 3.15	15 4
655	0.994	0.994	0.50	15.4
860	0.991	0.993	3.50	3.0

TABELLE 6 (Fortsetzung)

KÜRZESTE INTERATOMARE ABSTÄNDE (Å) UND VALENZWINKEL IN KALIUM-TETRAMETHYLALUMINAT Bezüglich der Indizes vgl. Fig. 1.

К-К	$5.22_{9} \pm 0.01$	CH ₃ (9)-CH ₃ (10)	3.70 <u>+</u> 0.1
K(i)-CH ₃ (l)	3.48 ± 0.1	CH ₃ (9)-CH ₃ (14)	3.30±0.1
K(2)-CH ₃ (1)	3.15 ± 0.1	CH ₃ (9)–CH ₃ (7)	4.04 ± 0.1
K-Al	$3.95_3 \pm 0.01$	CH ₃ (5)-CH ₃ (10)	4.66±0.1
Al-Al	5.22 + 0.01	CH ₃ (9)-Al(3)-CH ₃ (10	$)) 123.0 \pm 2^{\circ}$
Al-CH ₃	2.10 ± 0.1	CH ₃ (9)-Al(3)-CH ₃ (14	4) 103.2 ±2°

Bezüglich der Indizes vgl. Fig. 1.

TABELLE 8

KŪRZESTE INTERATOMARE ABSTĀNDE (Å) UND VALENZWINKEL IN RUBIDIUM-TETRAMETHYLALUMINAT Bezüglich der Indizes vgl. Fig. 1.

Rb-Rb	5.35 ₅ ±0.01	CH₃(9)CH₃(10)	3.20 ± 0.1
Rb(1)-CH ₃ (1)	3.16 ± 0.1	CH ₃ (9)-CH ₃ (14)	3.44 ± 0.1
$Rb(2)-CH_{3}(1)$	3.44 ± 0.1	CH ₃ (9)-CH ₃ (7)	4.23±0.1
Rb-Al	$4.01_8 \pm 0.01$	CH ₃ (5)CH ₃ (10)	4.97±0.1
Al-Al	5.35₅±0.01	CH ₃ (9)-Al(3)-CH ₃ (10) 102.0 $\pm 2^{\circ}$
Al-CH3	2.06 ±0.1	CH ₃ (9)-Al(3)-CH ₃ (14)113.3 ±2°

Intensitäten mit den beobachteten verglichen. Die Tabellen 7–11 enthalten die Atomabstände und Valenzwinkel der entsprechenden Strukturmodelle. Im K $[Al(CH_3)_4]$ und Rb $[Al(CH_3)_4]$ (grosse Zahl von beobachteten *hkl*, relativ leichteste Metallatome von den betrachteten 5 Verbindungen) dürften die ermittelten C-Koordinaten am besten mit den wirklichen Werten übereinstimmen. Die Metall-Kohlenstoff-Abstände entsprechen bei diesen Verbindungen auch ziemlich genau den Vorstellungen, die unabhängig hiervon an vergleichbaren Verbindungen gewonnene Einkristalldaten^{3,13} erwarten lassen. In den drei übrigen at-Komplexen dürfte es sich bei den erhaltenen C-Parametern um relativ grobe Näherungswerte handeln, was in den angegebenen Fehlergrenzen zum Ausdruck gebracht werden soll.

5.535±0.01	CH ₃ (9)-CH ₃ (10)	2.97 ±0.3
3.29 ± 0.2	CH ₃ (9)–CH ₃ (14)	3.27 ± 0.3
3.73 ±0.2	CH ₃ (9)-CH ₃ (7)	4.45±0.3
$4.18_{6} \pm 0.01$	CH ₃ (5)-CH ₃ (10)	5.41 <u>+</u> 0.3
5.535 ± 0.01	CH ₃ (9)-Al(3)-CH ₃ (10)	99.6 ±4°
1.95 ± 0.2	CH ₃ (9)-Al(3)-CH ₃ (14)	114.6 ±4°
	$5.53_{5} \pm 0.01$ 3.29 ± 0.2 3.73 ± 0.2 $4.18_{6} \pm 0.01$ $5.53_{5} \pm 0.01$ 1.95 ± 0.2	$\begin{array}{ccccccc} 5.53_5 \pm 0.01 & CH_3(9)-CH_3(10) \\ 3.29 \pm 0.2 & CH_3(9)-CH_3(14) \\ 3.73 \pm 0.2 & CH_3(9)-CH_3(7) \\ 4.18_6 \pm 0.01 & CH_3(5)-CH_3(10) \\ 5.53_5 \pm 0.01 & CH_3(9)-Al(3)-CH_3(10) \\ 1.95 \pm 0.2 & CH_3(9)-Al(3)-CH_3(14) \end{array}$

KÜRZESTE INTERATOMARE ABSTÄNDE (Å) UND VALENZWINKEL IN CÄSIUM-TETRAMETHYLALUMINAT Bezüglich der Indizes vgl. Fig. 1.

TABELLE 10

KÜRZESTE INTERATOMARE ABSTÄNDE (Å) UND VALENZWINKEL IN KALIUM-TETRAMETHYLGALLAT Bezüglich der Indizes vgl. Fig. 1.

K-K	$5.22_5 \pm 0.01$	CH ₃ (9)-CH ₃ (10)	4.11 <u>+</u> 0.4
K(1)-CH ₃ (1)	3.52 ± 0.3	CH ₃ (9)CH ₃ (14)	3.58 ± 0.4
$K(2) - CH_3(1)$	2.94 ±0.3	CH ₃ (9)–CH ₃ (7)	3.98 <u>+</u> 0.4
K-Ga	$3.91_2 \pm 0.01$	CH ₃ (5)–CH ₃ (10)	4.34±0.4
Ga-Ga	$5.22_5 \pm 0.01$	CH ₃ (9)-Ga(3)-CH ₃ (10)125.9 ±10°
Ga–CH ₃	2.31 ± 0.3	CH ₃ (9)–Ga(3)–CH ₃ (14)81.9 ±10°
К(2)-СН ₃ (1) К–Ga Ga–Ga Ga–CH ₃	$\begin{array}{r} 2.94 \pm 0.3 \\ 3.91_2 \pm 0.01 \\ 5.22_5 \pm 0.01 \\ 2.31 \pm 0.3 \end{array}$	$CH_{3}(9)-CH_{3}(7)$ $CH_{3}(5)-CH_{3}(10)$ $CH_{3}(9)-Ga(3)-CH_{3}(10)$ $CH_{3}(9)-Ga(3)-CH_{3}(14)$	4.34±0. 9125.9 ±10 9125.9 ±10 91.9 ±10

TABELLE 11

KÜRZESTE INTERATOMARE ABSTÄNDE (Å) UND VALENZWINKEL IN RUBIDIUM-TETRAMETHYLGALLAT Bezüglich der Indizes vgl. Fig. 1.

Rb-Rb	5.34 ₉ ±0.01	CH ₃ (9)-CH ₃ (10)	3.95 <u>+</u> 0.3
$Rb(1)-CH_{3}(1)$	3.60 ± 0.2	CH ₃ (9)-CH ₃ (14)	· 3.40 ± 0.3
Rb(2)-CH ₃ (1)	3.16 ± 0.2	CH ₃ (9)-CH ₃ (7)	4.10±0.3
Rb-Ga	$3.98_{0} \pm 0.01$	CH ₃ (5)-CH ₃ (10)	4.69 <u>+</u> 0.3
Ga-Ga	$5.34_{9} \pm 0.01$	$CH_{3}(9)-Ga(3)-CH_{3}(10)$	127.7 ±4°
Ga-CH ₃	2.20 ± 0.2	CH ₃ (9)-Ga(3)-CH ₃ (14)	101.2 <u>+</u> 4°

Eine Fouriersynthese des $K[Al(CH_3)_4]$ im Anschluss an die Intensitätsberechnungen bestätigte die ermittelten Atomkoordinaten (Fig. 3). Der gezeigte Schnitt erfasst alle interessierenden Atome. Überraschend daran ist, dass die Elektronendichte zwischen den Methylgruppen und den Al-Zentralatomen auf Null absinkt, was eine rein ionische Bindung bedeuten würde. Wir halten jedoch die mit Pulverdaten durchgeführte Fouriersynthese aus verschiedenen Gründen (hauptsächlich: mehrfach indizierte Reflexe und Abbrucheffekte) für nicht von hinreichender physikalischer Aussagekraft, um damit eine definitive Entscheidung über die Art der Al-C-Bindung zu treffen.

STRUKTURBESCHREIBUNG

Aus den oben genannten Gründen wird im folgenden das $K[Al(CH_3)_4]$ als repräsentativ für die übrigen Komplexe beschrieben. Das Strukturmodell hierfür ist in Fig. 1 dargestellt. Es zeigt die tetragonal-innenzentrierte Anordnung der [Al-(CH₃)₄]-Gruppen. Jedes Al-Atom ist im Abstand von 2.10 Å von 4 C-Atomen umgeben. Mit den Valenzwinkeln von 123° und 103.2° treten grössere Abweichungen

Fig. 3. Fourierschnitt von K[Al(CH₃)₄] parallel (100) für x = 0 (vgl. Fig. 1).

von der tetraedrischen Anordnung auf (vgl. dagegen 102° und 113.3° im Rb[Al-(CH₃)₄], Fig. 2). Der Al-C-Abstand ist erwartungsgemäss etwa 0.10 Å grösser als im $Al_2(CH_3)_6^8$ (endständige CH₃-Gruppe) und entspricht einer für at-Komplexe typischen gelockerten Bindung, wie sie schon in früheren Untersuchungen^{1,2,3} gefunden wurde. Aus Fig. 1 erkennt man, dass im Kalium-tetramethylaluminat wie in der Lithium-tetraäthyl-Verbindung in z-Richtung der Elementarzelle Ketten aus alternierenden Al- und Alkali-Atomen vorliegen. Dazwischen befinden sich die Methylgruppen in den (100)- und (010)-Ebenen. Im Gegensatz zu dem Äthylkomplex lässt sich jedoch ein Brückencharakter der CH3-Gruppen beim K[Al(CH3)4] mit Sicherheit ausschliessen, denn man findet hier einen K-C-Abstand (3.48 Å), welcher deutlich grösser ist als derjenige im Methylkalium (3.22 Å)⁹ und grösser als der grösste K-C-Abstand im besser vergleichbaren K [Zn(CH₃)₃] (3.28 Å)¹³. Der kürzeste K-C-Abstand von 3.15 Å wird zu den K-Atomen der jeweils benachbarten K-Al-Kette gefunden und stimmt innerhalb der Fehlergrenzen überein mit dem Wert im KCH₃ und dem kürzesten K–C-Abstand im K[Zn(CH₃)₃] (3.10 Å). Auch daraus lässt sich jedoch kein Mehrzentrenbindungscharakter (kovalenter K-C-Bindungsanteil) ableiten, denn der Al-C-Bindungsabstand ändert sich praktisch nicht beim Übergang zum Rubidiumkomplex (Tabelle 8), und gleichzeitig bleiben alle von der Stabilität der M^{III}-C-Bindung und von der Elektronegativität des Zentralatoms abhängigen IR-Banden in ihrer Lage vom Kalium- bis zum Cäsiumkomplex konstant⁷. Daraus muss auf ein Polaritätsmaximum der M-C-Bindungen (M = K, Rb, Cs; Al) geschlossen werden, welches ab K [Al(CH₃)₄] keine Steigerung mehr erfährt. Für die Gallatkomplexe wurden analoge IR-spektroskopische Ergebnisse erhalten⁷. Es müssen daher für diese Verbindungen trotz der nicht hinreichend genauen C-

Koordinaten die gleichen Bindungsverhältnisse angenommen werden. Demzufolge bestehen in allen vorliegenden at-Komplexen nur elektrostatische Wechselwirkungen zwischen Kationen und komplexen Anionen. Es liegen getrennte M^+ - und $[M^{III}-(CH_3)_4]^-$ -Ionen vor. Für die Bindung zwischen den Zentralatomen und Liganden folgt aus den ermittelten Atomabständen (Tabellen 7 und 8), aus den berechneten M^{III} -C-Kraftkonstanten⁷, sowie aus der Fouriersynthese des K $[Al(CH_3)_4]$ (Fig. 3) ein beträchtlicher polarer Anteil. Jedoch gestatten diese Ergebnisse infolge der darin enthaltenen methodischen Fehler keine endgültige Aussage über den Grad der Polarität dieser Bindung.

BESCHREIBUNG DER VERSUCHE

Alle präparativen Arbeiten wurden unter strengstem Ausschluss von Luft und Feuchtigkeit in einer Atmosphäre von reinem, trockenen Stickstoff ausgeführt. Die Lösungsmittel wurden über K/Na-Legierung absolutiert.

Trimethylgallium-Ätherat

In Anlehnung an Renwanz¹⁴ wurden 10 g (32.4 mMol) Galliumtribromid, in Äther gelöst, bei Raumtemperatur unter Rühren zu überschüssigem, ätherischen Methylmagnesium-bromid getropft. Der Äther erwärmte sich dabei zum Rückfluss. Die Mischung wurde weitere 15 Stdn. unter Rückfluss gekocht. Anschliessend destillierte man die Hauptmenge des Äthers bei Normaldruck und bis 100° ansteigender Ölbadtemperatur durch eine *ca*. 25 cm lange Vigreux-Kolonne ab. Der feste Rückstand wurde bei 30 mm langsam bis 250° erhitzt, wobei durch die gleiche Kolonne mit einem Sdp. von *ca*. 25° ein wasserklares Destillat überging. Dieses wurde nochmals bei Normaldruck ebenfalls an der Vigreux-Kolonne fraktioniert. Dabei erhielt man 5.8 g (95% d. Th.) des bei 100° siedenden Trimethylgallium-ätherats. Die Ausbeute konnte gegenüber der Literatur (40% d. Th.) wesentlich verbessert werden.

Kalium-tetramethylaluminat

In Anlehnung an Zakharkin und Gavrilenko¹⁵ wurde in einem 500-ml-Vierhalskolben mit Rückflusskühler, Thermometer, Tropftrichter und Magnetrührer zu einer Suspension von fein verteiltem Kalium in THF bei Raumtemperatur eine Lösung von Trimethylaluminium in THF getropft. Das Kalium war, berechnet auf eine entstehende Verbindung K [Al(CH₃)₄], in 10–20% igem Überschuss vorhanden. Anschliessend erhitzte man die Mischung 5 Stdn. auf 60°, filtrierte vom Aluminium und überschüssigem Kalium ab, dampfte das Filtrat im Vak. ein und trocknete den farblosen, mikrokristallinen Rückstand bei 120°/10⁻³ mm. Das Produkt ist nicht pyrophor, stark hygroskopisch und reagiert mit Wasser unter Entzündung. Die Analysen entsprachen der in der Lit. angegebenen Verbindung.

Rubidium-tetramethylaluminat

Diese Verbindung wurde in Analogie zum Kaliumkomplex dargestellt. Das Rubidium wurde in einer Ampulle in den Kolben gebracht und die Ampulle dort zerbrochen. Die Reaktion verlief etwa so schnell wie beim Kalium. Es wurde wie dort aufgearbeitet. Das Produkt ist nicht pyrophor, nicht so hygroskopisch wie die Kaliumverbindung und reagiert mit Wasser ohne Entzündung. (Gef.: C, 28.08; H, 6.78; Al, 15.60; Rb, 49.13. $C_4H_{12}AIRb$ ber.: C, 27.83; H, 7.01; Al, 15.63; Rb, 49.53%.)

Cäsium-tetramethylaluminat

Diese Verbindung wurde in Analogie zur Rubidiumverbindung dargestellt. Das Cäsium reagierte jedoch wesentlich langsamer (!). Die Reaktion dauerte etwa 3 Tage und 2 Nächte. Es wurde wie oben aufgearbeitet, jedoch bei nur $60^{\circ}/10^{-3}$ mm getrocknet. Das Produkt kristallisiert in verfilzten, sternförmigen Nadeln, ist nicht pyrophor, entzündet sich aber mit Wasser. (Gef.: C, 22.62; H, 5.77; Al, 11.73; Cs, 59.21. C₄H₁₂AlCs ber.: C, 21.83; H, 5.50; Al, 12.26; Cs, 60.40%.)

Kalium-tetramethylgallat

In einem Schlenkrohr wurden zu einer Suspension von 230 mg fein verteiltem Kalium (6 mMol) in *ca.* 10 ml THF unter Kühlung mit fl. N₂ 15.5 ml einer Lösung von Trimethylgallium-ätherat in THF (enthaltend *ca.* 5 mMol Trimethylgallium) gegeben. Die Reaktion begann unmittelbar nach dem Auftauen des Gemisches und war nach *ca.* einstündigem Rühren bei Raumtemperatur beendet. Es wurde durch eine G4-Fritte filtriert, das Filtrat im Vak. eingedampft und der farblose, gut kristallisierende Rückstand bei 100–120°/10⁻³ mm getrocknet. Das Produkt ist nicht pyrophor, sehr hygroskopisch, etwas filzig und reagiert mit Wasser ohne Entzündung. (Gef.*: C, 28.39; H, 6.58; K, 22.34. C₄H₁₂GaK ber.: C, 28.44; H, 7.16; K, 23.14%.)

Rubidium-tetramethylgallat

In einem Schlenkrohr wurde eine Ampulle mit *ca.* 1 g Rubidium (*ca.* 11.5 mMol) zerbrochen. Es wurden *ca.* 10 ml THF und unter Kühlung mit fl. N₂ 19 ml einer Lösung von Trimethylgallium-ätherat in THF (enthaltend *ca.* 6.2 mMol Trimethylgallium) zugegeben. Nach dem Auftauen wurde noch eine Std. bei Raumtemperatur gerührt und durch eine G4-Fritte filtriert. Dabei erhielt man ein dunkelbraunes Filtrat. Dieses wurde eingeengt—wobei weiteres Ga ausfiel—und nochmals filtriert. Das nunmehr hellbraune Filtrat wurde i. Vak. eingedampft, der Rückstand wieder mit THF aufgenommen und die Lösung nochmals filtriert. Das gelbliche Filtrat ergab schliesslich nach dem Eindampfen und Trocknen bei 100–120°/10⁻³ mm ein sehr gut kristallisierendes Produkt, welches vermutlich noch Spuren von elementarem Gallium enthält. Es ist nicht pyrophor und reagiert mit Wasser ohne Entzündung. (Gef.: C, 22.70; H, 5.90; Rb, 39.34. C₄H₁₂GaRb ber.: C, 22.31; H, 5.62; Rb, 39.70%.)

DANK

Wir danken dem Fonds der chemischen Industrie für Sachbeihilfen, der Firma Hans-Heinrich-Hütte, Langelsheim, für die Bereitstellung von Alkalimetallen und Herrn Dr. F. Bandermann, Hamburg, für die Überlassung von Trimethylaluminium.

LITERATUR

1 E. WEISS UND R. WOLFRUM, Chem. Ber., 101 (1968) 35.

2 E. WEISS UND R. WOLFRUM, J. Organometal. Chem., 12 (1968) 257.

* Nach erfolglosen Versuchen, das Ga in Analogie zum Al zu bestimmen¹⁶, wurde, besonders im Hinblick auf die röntgenographischen Ergebnisse, auf eine Galliumanalyse verzichtet.

- 3 R. L. GERTEIS, R. E. DICKERSON UND T. L. BROWN, Inorg. Chem. 3 (1964) 872.
- 4 K. MACH, J. Organometal. Chem., 2 (1964) 410.
- 5 N. SKLAR UND B. POST, Inorg. Chem., 6 (1967) 669.
- 6 V. M. BAKULINA, S. I. BAKUM UND T. N. DYMOVA, Russ. J. Inorg. Chem., 13 (5) (1968) 673.
- 7 R. WOLFRUM, Dissertation, Universität Hamburg, 1969.
- 8 P. H. LEWIS UND R. E. RUNDLE, J. Chem. Phys., 21 (1953) 986.
- 9 G. SAUERMANN, Dissertation, Universität Hamburg, 1968.
- 10 International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, 1965.
- 11 A. K. BHUIYA UND E. STANLEY, Acta Crystallogr., 16 (1963) 891.
- 12 F. H. MOORE, Acta Crystallogr., 16 (1963) 1169.
- 13 H. ALSDORF, Dissertation, Universität Hamburg, 1969.
- 14 G. RENWANZ, Chem. Ber., 65 (1932) 1308.
- 15 L. I. ZAKHARKIN UND V. V. GAVRILENKO, J. Gen. Chem. USSR, 32 (1962) 689.
- 16 Komplexometrische Bestimmungsmethoden mit Titriplex, Merck, Darmstadt, 1963.